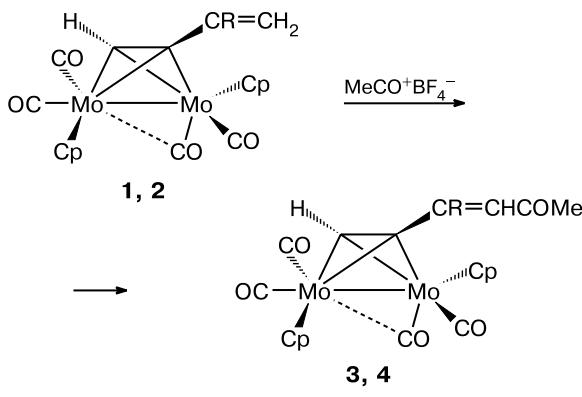

Letters to the Editor

Electrophilic substitution at the unsaturated carbon atom in $\mathbf{Cp}_2\mathbf{Mo}_2(\mathbf{CO})_4(\mu\text{-}\eta^2,\eta^2\text{-HC}\equiv\mathbf{C}-\mathbf{CR}=\mathbf{CH}_2)$ complexes ($\mathbf{R} = \mathbf{H}$ or \mathbf{Me})

I. V. Barinov* and S. L. Kireev

Department of Chemistry, M. V. Lomonosov Moscow State University,
Leninskaya gora, 119899 Moscow, Russian Federation.
Fax: +7 (095) 939 5536


An interesting way of using metal-stabilized carbocations is their application in organic synthesis (see Ref. 1 and references cited therein). A well developed version of this approach is that the double bond of a coordinated alkyne is functionalized by successive treatment of the latter with electrophilic and nucleophilic reagents. It has been illustrated with hexacarbonyldicobalt complexes containing coordinated vinylacetylene or its derivatives (see Refs. 2, 3 and references cited therein) that an intermediate cation is rather stable and allows stepwise addition of electrophilic and nucleophilic reagents.

Molybdenum analogs of cobalt complexes, which contain two cyclopentadienyl ligands instead of two carbonyl ones, namely, $[\mathbf{Cp}_2\mathbf{Mo}_2(\mathbf{CO})_4(\mu\text{-}\eta^2,\eta^2\text{-HC}\equiv\mathbf{C}-\mathbf{CR}=\mathbf{CH}_2)]$ ($\mathbf{R} = \mathbf{H}$ (1) and \mathbf{Me} (2)), are also precursors of metal-stabilized $[\mathbf{Cp}_2\mathbf{Mo}_2(\mathbf{CO})_4(\mu\text{-}\eta^2,\eta^3\text{-HC}\equiv\mathbf{C}-\mathbf{CRMe})]^+$ carbocations. The latter are more stable than the above cobalt analogs.^{4,5} It was interesting to find out how replacement of the metal

and one of the ligands would affect the reactivities of coordinated alkynes 1 and 2.

The reactions of compounds 1 and 2 with acetylum tetrafluoroborate at -70°C followed by treatment of the reaction mixture with MeOH (under the conditions similar to those for cobalt analogs) did not yield products of successive addition of the MeCO and OMe groups to the double bond of these compounds. Instead, the sole reaction products were alkynes 3 and 4 resulted from the addition of the acetylum cation followed by proton elimination.

Formally, this process can be regarded as electrophilic substitution at the unsaturated carbon atom of the coordinated alkyne ligand and is the first example of such reactions. The structures of substitution products **3** and **4** were confirmed by ^1H NMR data. The protons of the substituted vinyl group in compound **3** give an AB spectral pattern. ^1H NMR (benzene- d_6), δ : 2.03 (s, 3 H, Me); 4.79 (s, 10 H, Cp); 5.36 (d, 1 H, $\text{HC}\equiv\text{CCH}=\text{CH}$, $^4J = 0.7$ Hz); 6.25 (d, 1 H, $\text{CH}=\text{CHCOMe}$, $^3J = 15.2$ Hz); 7.89 (dd, 1 H, $\text{CH}=\text{CHCOMe}$, $^3J = 15.2$ Hz, $^4J = 0.7$ Hz). IR (Vaseline oil), ν/cm^{-1} : 1675 (C=O).

The ^1H NMR spectrum of compound **4** shows five sets of signals, which correlates with the structure proposed. ^1H NMR (acetone- d_6), δ : 2.08 (d, 3 H, $\text{CMe}=\text{CHCOMe}$, $^4J = 0.4$ Hz); 2.18 (d, 3 H, $\text{CMe}=\text{CHCOMe}$, $^4J = 1.1$ Hz); 5.47 (s, 10 H, Cp); 6.14 (qq, 1 H, $\text{CMe}=\text{CHCOMe}$, $^3J = 1.1$ Hz, $^4J = 0.4$ Hz); 6.20 (s, 1 H, $\text{HC}\equiv\text{CC(Me)}=\text{CH}$). IR (Vaseline oil), ν/cm^{-1} : 1665 (C=O).

Variation of the reaction conditions (ratio of the starting reagents, temperature, and the nature of the electrophile and the nucleophile) did not result in successive

addition of an electrophile and an nucleophile; in all cases, substitution products were isolated only.

The use of molybdenum complexes opens a potentially novel route to alkynes functionalized at the double bond, which differs from functionalization promoted by cobalt complexes.

References

1. K. M. Nicholas, *Acc. Chem. Res.*, 1987, **20**, 207.
2. W. A. Smit, R. Caple, and I. P. Smoliakova, *Chem. Rev.*, 1994, **94**, 2359.
3. W. A. Smit, M. I. Lazareva, I. P. Smoliakova, and R. Caple, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 1862 [*Russ. Chem. Bull., Int. Ed.*, 2001, **50**, 1949].
4. I. V. Barinov, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 747 [*Russ. Chem. Bull.*, 1998, **47**, 726 (Engl. Transl.)].
5. R. E. Connor and K. M. Nicholas, *J. Organomet. Chem.*, 1977, **125**, 45.

Received May 28, 2002;
in revised form November 25, 2002